HEALTH SCIENCES FACILITY III Baltimore, Maryland

KATHRYN GONZALES

Penn State Architectural Engineering

Construction Management

Advisor | Dr. Somayeh Asadi

Spring 2015

Project Information

Analysis 1 | Shoring System

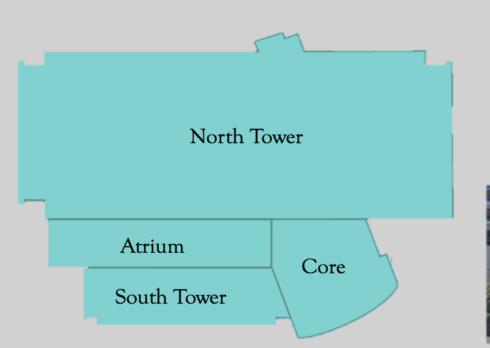
Structural Breadth

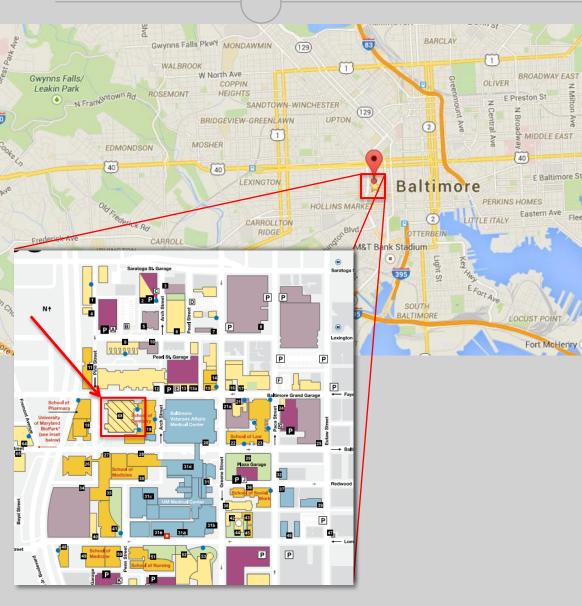
Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix




Project Information

Building Name Building Location Size **Number of Stories Construction Date Construction Cost Delivery Method**

Health Sciences Facility III Baltimore, MD 435,000 GSF 11 above grade, 2 below July 2013-September 2017 \$206 Million **CM at Risk**

Project Information

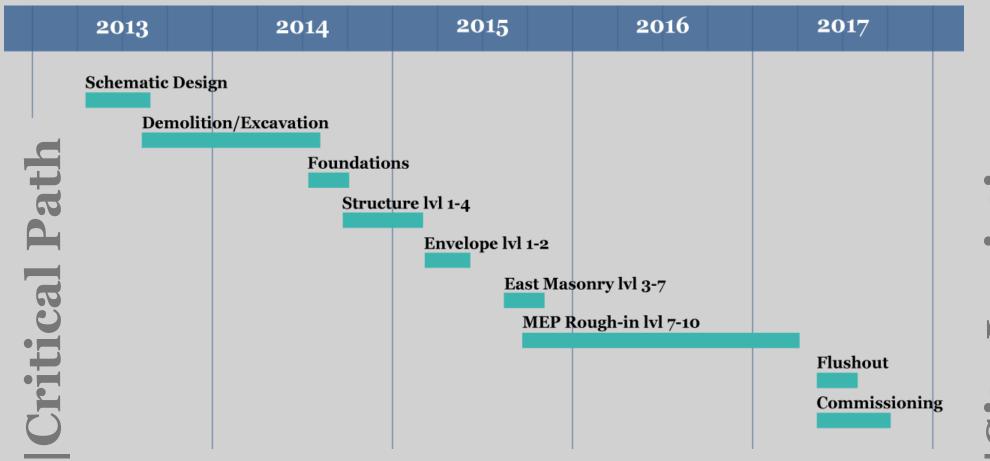
Project Information

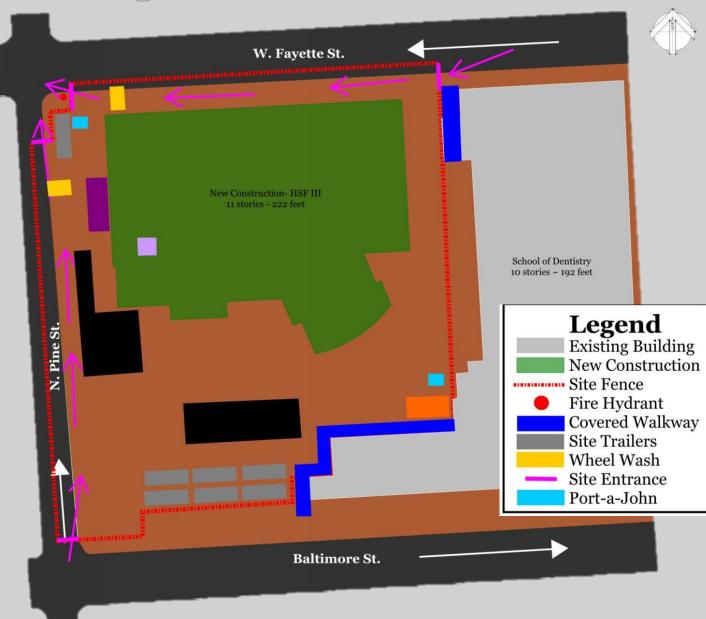
Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow


Conclusion


Appendix

Construction Cost

System	Amount
Demolition/Excavation	\$7,616,000
Structure	\$21,297,000
Envelope	\$34,726,000
Mechanical/Plumbing	\$62,903,000
Electrical	\$32,357,000
Fire Protection	\$1,965,000
Sitework	\$2,672,800
Other	\$42,956,200
General Conditions	\$10,130,300
Total	\$ 206,493,000

Project Information

Analysis 1 | Shoring System

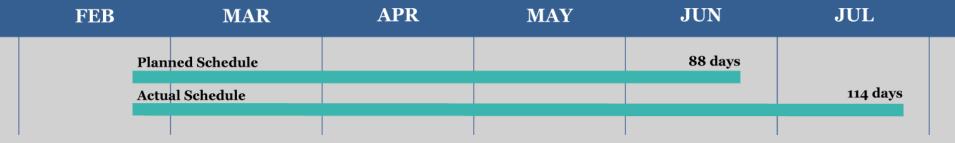
Structural Breadth

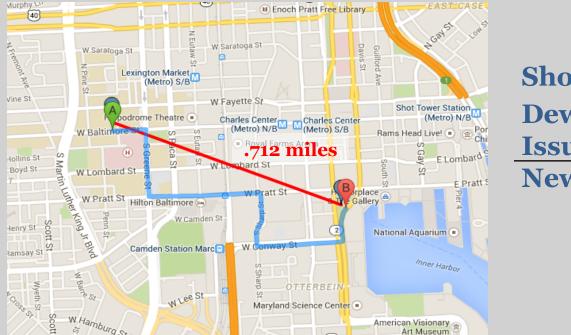
Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Analysis 1 | Shoring System


Advantages Disadvantages


- Versatile to adjustments in the field
- Fast to Construct
- Cheaper installation compared to other systems
- Does not require advanced construction techniques

Difficult to use with high water tables

- Poor backfilling can lead to settlement
- Not as stiff as other shoring methods

Shoring
Dewatering
Issues
New Total

l \$2,130,000

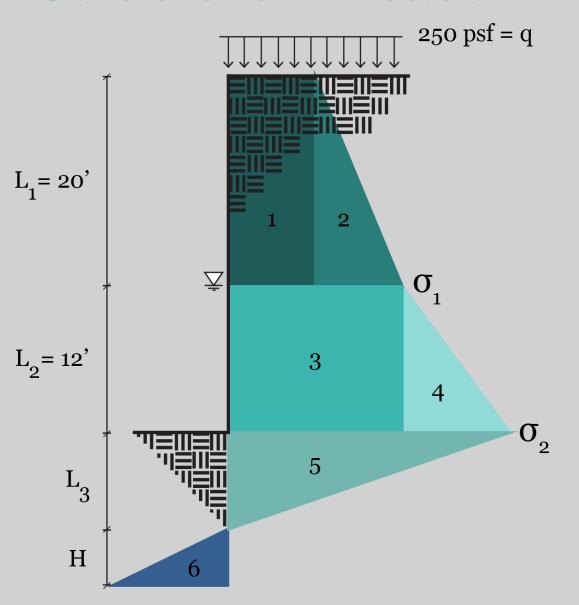
\$1,480,000

\$650,000

Project Information

Analysis 1 | Shoring System

Structural Breadth


Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Structural Breadth

Kathryn Gonzales | Construction Management

Assumed Values

Soil Property	Amt	Unit
Water Table	20	ft
Angle of Friction, ϕ	35	Degrees (°)
Moist Unit Weight, γ	125	pcf
Sat Unit Weight, γ_{SAT}	145	pcf
Construction surcharge, q	250	psf
Allowable bearing, q_a	5000	psi
Soil Type	SM	

Calculated Values

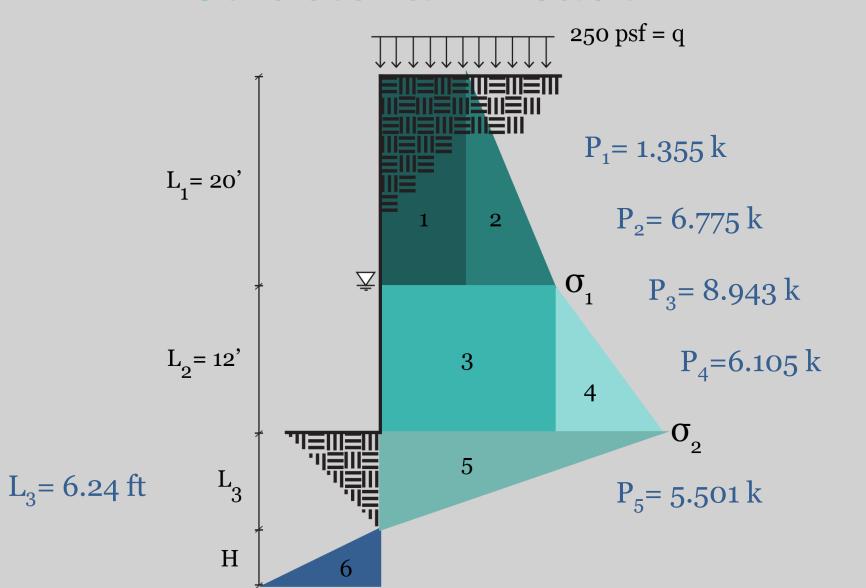
Property	Amt	Unit
$ \gamma' = \gamma_{SAT} - \gamma_w $	82.6	pcf
k_a	.271	
k_{p}	3.69	

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation


Analysis 3 | Cash Flow

Conclusion

Appendix

Structural Breadth

Assumed Values

Soil Property	Amt	Unit
Water Table	20	ft
Angle of Friction, ϕ	35	Degrees (°)
Moist Unit Weight, γ	125	pcf
Sat Unit Weight, γ_{SAT}	145	pcf
Construction surcharge, q		psf
Allowable bearing, q_a	5000	psi
Soil Type		

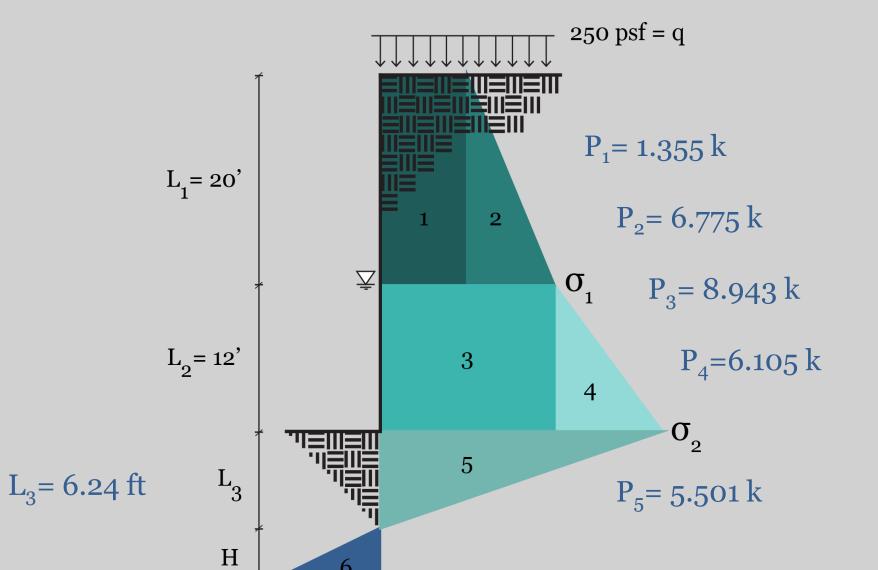
Calculated Values

Property	Amt	Unit
$\gamma' = \gamma_{SAT} - \gamma_w$	82.6	pcf
	.271	
k_{p}	3.69	

Project Information

Analysis 1 | Shoring System

Structural Breadth


Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Structural Breadth

Assumed Values__

Soil Property	Amt	Unit	
Water Table	20	ft	
Angle of Friction, ϕ		Degrees (°)	
Moist Unit Weight, γ	125	pcf	
Sat Unit Weight, γ_{SAT}	145	pcf	
onstruction surcharge, q	250	psf	
Allowable bearing, q_a	5000	psi	
Soil Type	SM		

Calculated Values

Amt	Unit	
82.6	pcf	
.271		
3.69		
	82.6	Amt Unit 82.6 pcf .271 3.69

Without Tiebacks

H= 24.4 ftTotal height= 62.64 ft

With Tiebacks

H= 5.5 ft
Total height= 44 ft
Tieback Force= 24k/ft

Shear and Moment

Mu=239ft ·k Vu= 23.3 k

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Structural Breadth

Solution Estimate SKZ 38 Skyline Steel Z-Sheet Pile name SKZ 38 units 400 height 44.00 ft weight per ft 88.95 lb/ft

782.747 short tons

Summary

neignt	44.00 It
et wall length	948.00 ft
al wall length	950.00 ft
el quantity	400
es to install	400
OIT® sealant	17,600.00 ft
ose WADIT® sealant	
area	41,800.00 ft ²
el weight	88.95 lb/ft
ht per ft^2	37.45 lb/ft ²
ion modulus	62.32 in ³ /ft
nent of inertia	560.85 in ⁴ /ft
weight	782.747 short tons

44 00 ft

Project Information

Analysis 1 | Shoring System

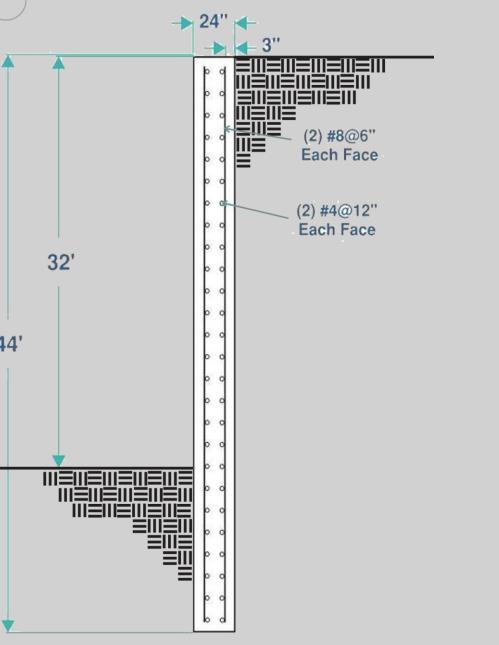
Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Structural Breadth


Solution Estimate

SKZ 38 Skyline Steel Z-Sheet Pile SKZ 38 name 44.00 ft 88.95 lb/ft weight per ft total weight 782.747 short tons

Summary

neignt	44.00 ft
et wall length	948.00 ft
ual wall length	950.00 ft
el quantity	400
es to install	400
DIT® sealant	17,600.00 ft
ose WADIT® sealant	
area	41,800.00 ft ²
el weight	88.95 lb/ft
ght per ft^2	37.45 lb/ft ²
tion modulus	62.32 in ³ /ft
ment of inertia	560.85 in ⁴ /ft
I weight	782.747 short tons

44 00 ft

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Comparison Matrix

oring System	Price
Pile and Lagging	\$2,130,000
Sheet Piles	\$1,640,000
Slurry Wall	\$3,029,810

Pile and Sheet Pi

Pile and Lagging 114 Days Sheet Piles 90 Days Slurry Wall 363 Days	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB
90 Days	Pile and Lagging			114	Days							
Slurry Wall 363 Days	Sheet Piles		90	Days								
	Slurry Wall										363	Days

Kathryn Gonzales | Construction Management

Sheet Piles Recommended ✓

	Pile and	Sheet	Slurry
	Lagging	Piles	Wall
Availability	✓	✓	✓
Constructability		✓	
Cost	✓	✓	
Schedule	V	V	

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Analysis 2 | Motivation

Question: What are the drivers of motivation and how does that correlate with team performance?

Audience: Construction Managers

Method: Literature review and industry survey

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Survey Results

- A respectable leader
- Formal recognition
- Promotional opportunities
- Time off
- A challenging project
- Money
- A complex project

- Negative consequences
- Team reputation
- Negative feedback
- An unmotivated team leader
- The team
- When believe in the cause

Not at All

Very Little

Somewhat Si

Significantly

Very Significantly

Project Information Analysis 1 | Shoring System Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Survey Results

- A respectable leader
- Formal recognition
- Promotional opportunities
- Time off
- A challenging project
- Money
- A complex project

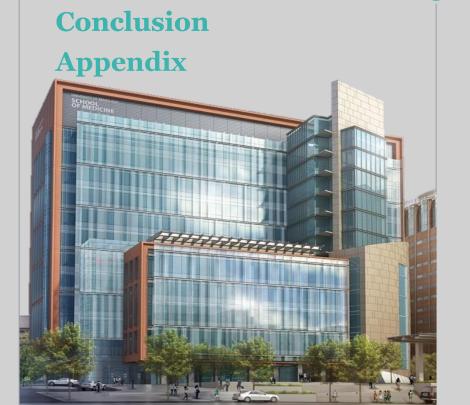
- Negative consequences
- Team reputation
- Negative feedback
- An unmotivated team leader

Very Significantly

- The team
- When believe in the cause

Not at All Very Little Somewhat Significantly

Driver	%	Driver	%
Biivei	Significant	Bilvei	Insignificant
lieve in Cause	100	Unmotivated Team Member	60
spectable Leader	97	Negative Consequences	43
Challenging Project	83	Negative Feedback	27
am reputation	80	Time Off	20
suming Leadership	77	Formal Recognition	7
sition			
Complex Project	73	Promotional Opportunities	7
e Team	63	Team Reputation	7
omotional	60	Money	3
portunities			
oney	57	A Complex Project	3
ne Off	53	The Team	3
rmal Recognition	50	Respectable Leader	0
gative Consequences	37	A Challenging Project	0
gative Feedback	27	Assuming Leadership	0
		Position	
motivated Team	10	Believe in Cause	0
ember			


Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Survey Results

Driver #1 Driver #2 A challenging project A complex project When believe in the The team cause The team Motivated leader influences team performance Formal recognition Promotional opportunities Time off Promotional opportunities

Degree of

Correlation

.70

.58

.54

.51

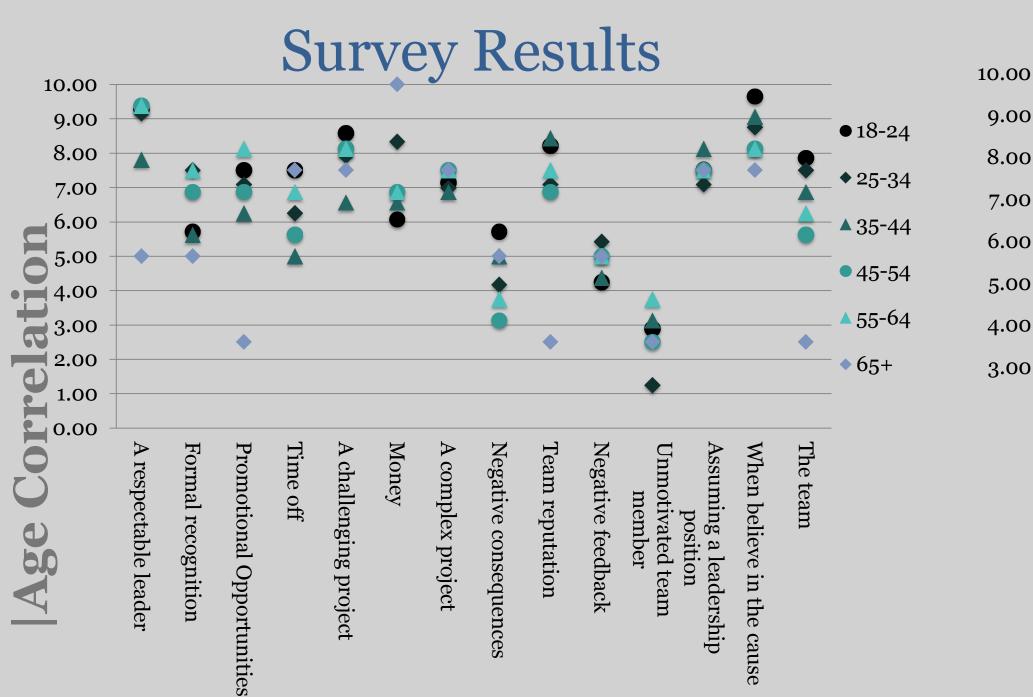
.45

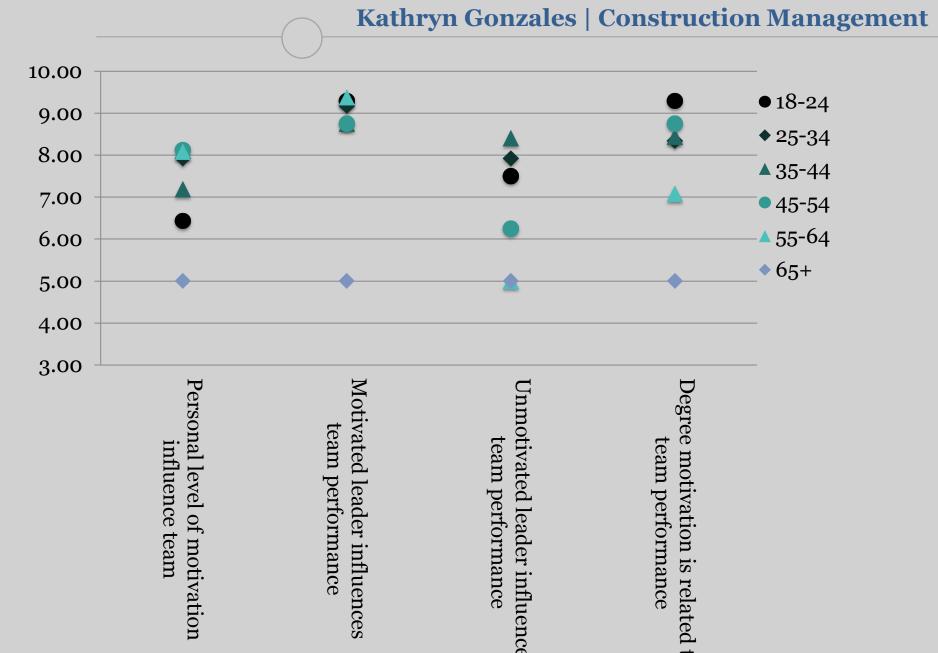
thryn Gonzales	Construction Management

Driver #2	Degree of Correlation
Degree motivation related to team performance	44
Motivated leader influences team performance	4 3
Assuming a leadership position	40
Unmotivated leader influences team performance	39
Motivated leaders influences team performance	38
	Degree motivation related to team performance Motivated leader influences team performance Assuming a leadership position Unmotivated leader influences team performance Motivated leaders influences team

Project Information

Analysis 1 | Shoring System


Structural Breadth


Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Survey Results

What do you think is the most effective way to motivate your team?

- Communication
- Family community
- Good leadership
- Positive recognition
- A good attitude
- Be an example
- Clear goals
- Understand the individuals on the team

Project Information Analysis 1 | Shoring System Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Survey Results

What do you think is the most effective way to motivate your team?

- Communication
- Family community
- Good leadership
- Positive recognition
- A good attitude
- Be an example
- Clear goals
- Understand the individuals on the team

Kathryn Gonzales | Construction Management

How does conflict affect motivation or team performance?

If handled well, conflict can become a rallying point for a team. Conflict has a tendency to motivate me to push harder and stake my position on the high road.

Humans will not want to do something that they do not feel comfortable doing or if conflict exists between people. Team performance will be affected if conflict exists because the team will not trust each other and it will hinder communication between the two parties.

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Analysis 2 | Motivation

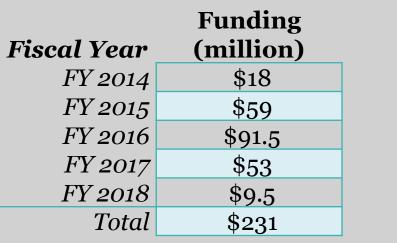
- 1. Two major drivers of motivation:
 - Belief in the cause
 - Respectable leader
- 2. Negative motivators
- 3. Age correlation
- 4. Trust and communication
- 5. Conflict and team performance

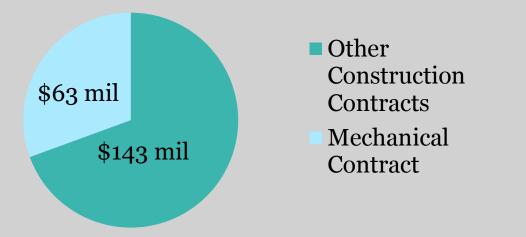
Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation


Analysis 3 | Cash Flow


Conclusion

Appendix

Analysis 3 | Cash Flow

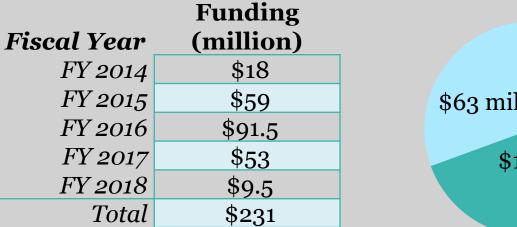
2013	2014	2015	2016	2017	2018
Construction	n Duration				50 months
_	Mechanical	Duration			39 months

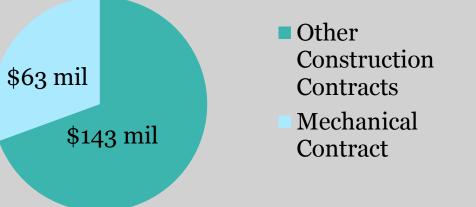
Project Information

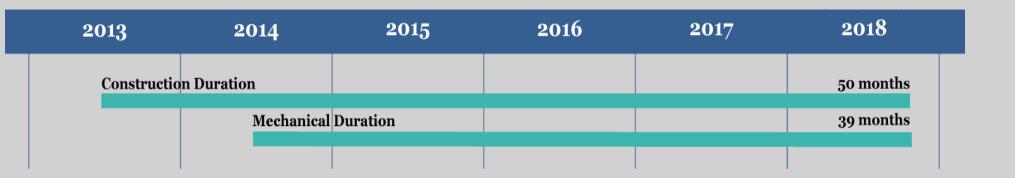
Analysis 1 | Shoring System

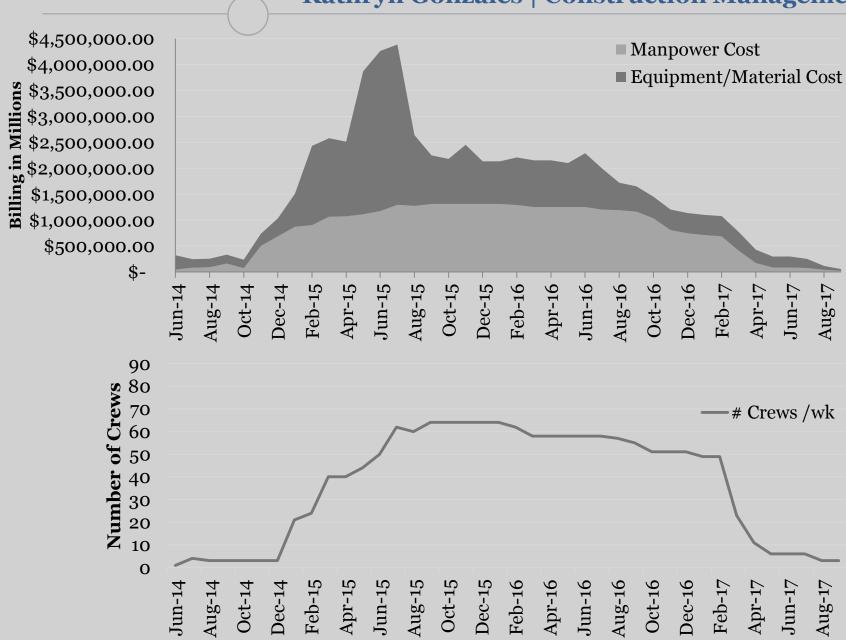
Structural Breadth

Analysis 2 | Motivation

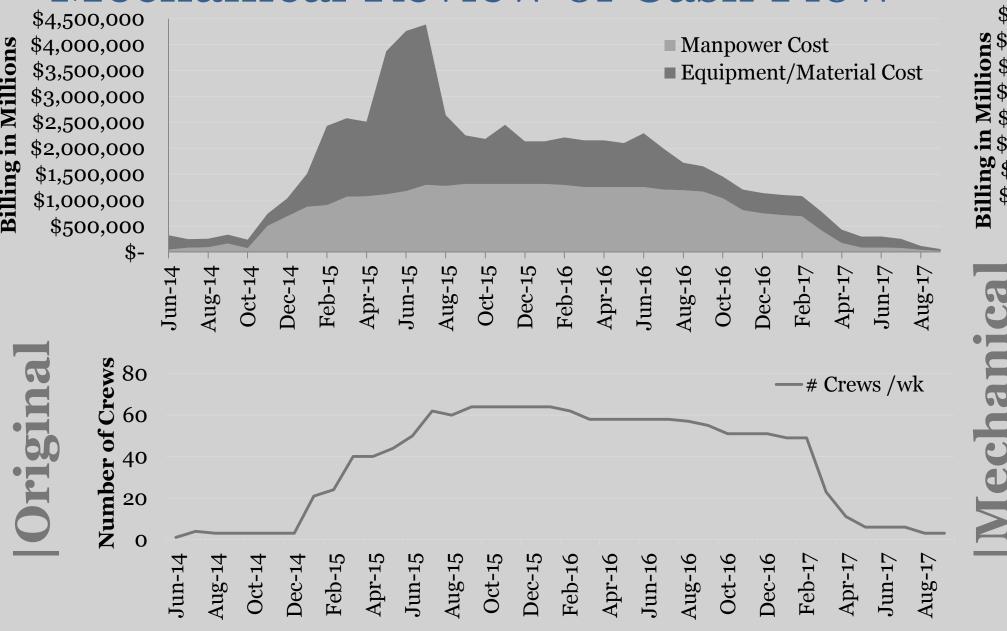

Analysis 3 | Cash Flow

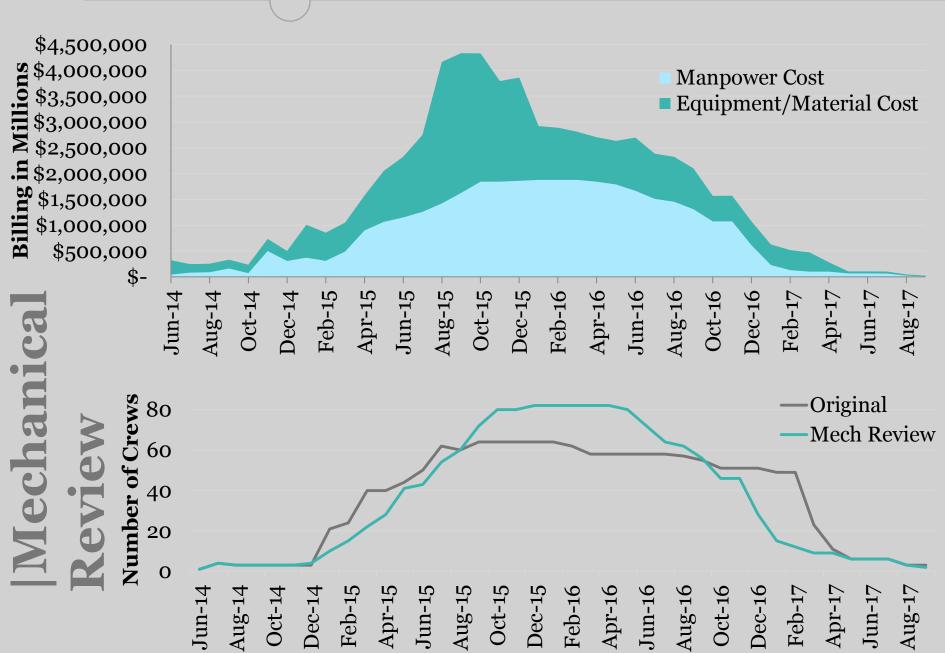

Conclusion


Appendix



Analysis 3 | Cash Flow





Project Information Analysis 1 | Shoring System Structural Breadth **Analysis 2 | Motivation Analysis 3 | Cash Flow** Conclusion **Appendix**

Mechanical Review of Cash Flow

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Legend

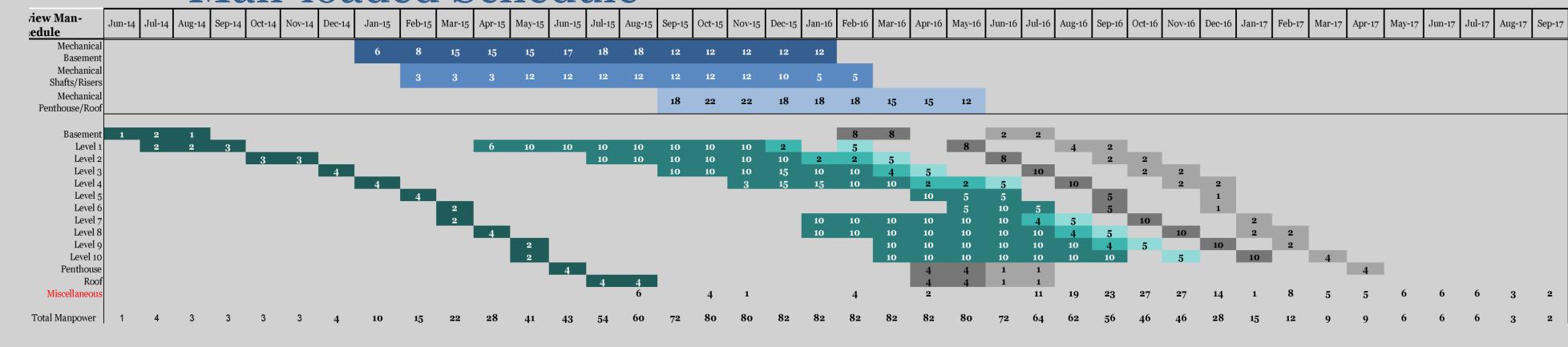
Mechanical Basement Mechanical Shaft/Risers

Mech LP/UP

Sleeves/ Inserts

Overhead/ In wall

Connect Service Panel


Connect Lab Equip

TAB

Commissioning

Kathryn Gonzales | Construction Management

Mechanical Review Man-loaded Schedule

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

<u>Legend</u>

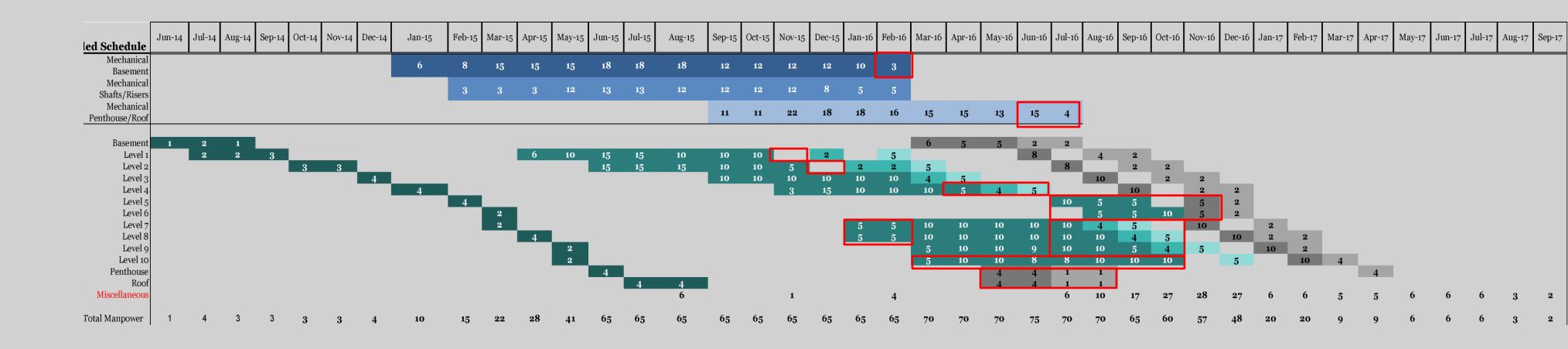
Mechanical Basement Mechanical Shaft/Risers

Mech LP/UP

Sleeves/ Inserts

Overhead/ In wall

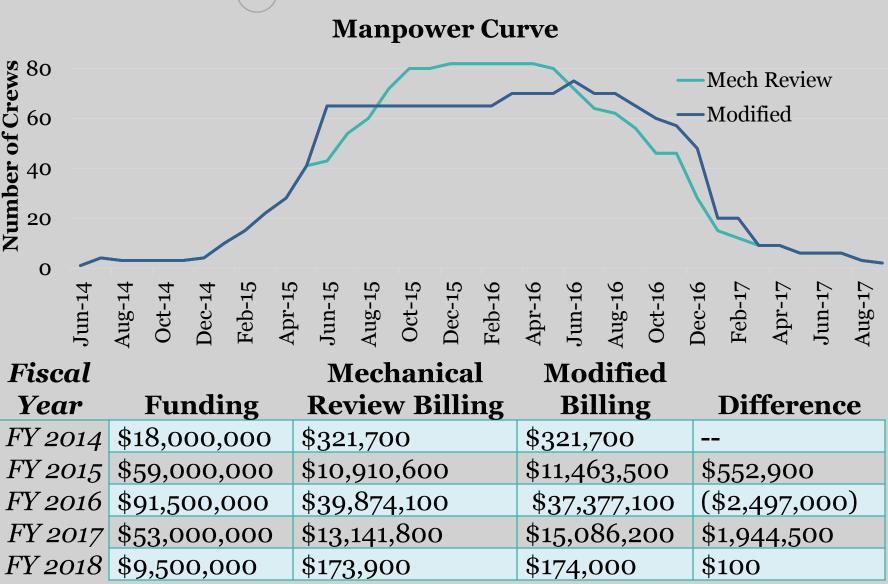
Connect Service Panel


Connect Lab Equip

TAB

Commissioning

Kathryn Gonzales | Construction Management


Modified Man-loaded Schedule

Project Information Analysis 1 | Shoring System Structural Breadth **Analysis 2 | Motivation Analysis 3 | Cash Flow** Conclusion **Appendix**

Modified Man-loaded Schedule

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow


Conclusion

Appendix

Analysis 3 | Cash Flow

Modified Total Cash Flow

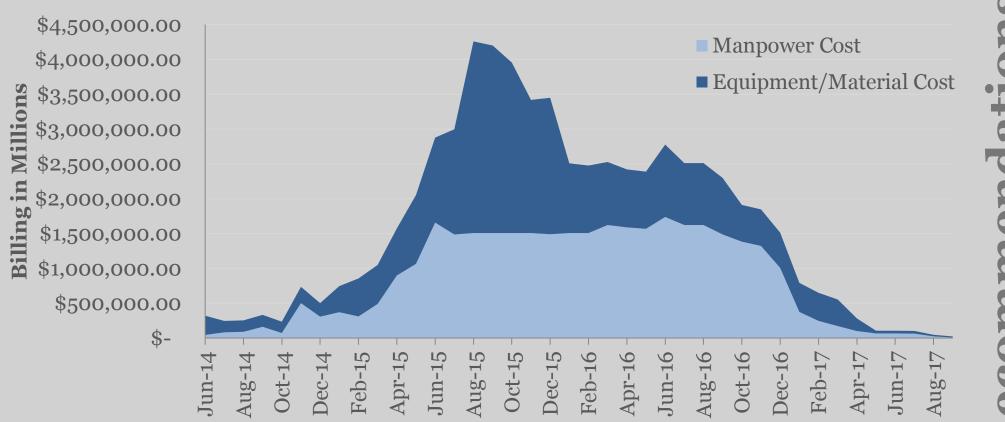
Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow


Conclusion

Appendix

Analysis 3 | Cash Flow

Modified Total Cash Flow

Kathryn Gonzales | Construction Management

Resource Leveling Recommended

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Analysis 1
Shoring System

Sheet Piles
Recommended ✓

Kathryn Gonzales | Construction Management

Final Remarks

Final Remarks

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Analysis 1
Shoring System

Analysis 2
Motivation

Sheet Piles
Recommended ✓

- Two major drivers of motivation:
 - Belief in the cause
 - Respectable leader
- 2. Negative motivators
- 3. Age correlation
 - . Trust and communication
- 5. Conflict and team performance

Final Remarks

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Analysis 1
Shoring System

Analysis 2
Motivation

Analysis 3
Cash Flow

Sheet Piles Recommended ✓

- Two major drivers of motivation:
 - Belief in the cause
 - Respectable leader
- 2. Negative motivators
- 3. Age correlation
 - Trust and communication
- 5. Conflict and team performance

Resource Leveling Recommended

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Analysis 1 Shoring System

Sheet Piles

Recommended

Analysis 2 **Motivation**

Two major drivers of motivation:

Belief in the cause

Respectable leader

Trust and communication

Conflict and team performance

2. Negative motivators

3. Age correlation

Final Remarks

Analysis 3 Cash Flow

Resource Leveling Recommended

Academic

Dr. Somayeh Asadi Dr. Rob Leicht **Kevin Parfitt** Walt Schneider

Special Thanks

Family and Friends Jesus Christ

HSFIII Team

Roger Stadler Chuck Briney Josh Kraus Bill Gamble Chris Brooks

Other Industry Leaders

Jason McFadden

HEALTH SCIENCES FACILITY III Baltimore, Maryland

KATHRYN GONZALES

Penn State Architectural Engineering

Construction Management

Advisor | Dr. Somayeh Asadi

Spring 2015

Questions?

Appendix

Passive Forces

 $P_6 = \frac{1}{2} k_p \gamma' H^2$

 $= .5(3.69)(82.6)H^2 = 152H^2$

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Active Forces

$$P_1 = k_a q L_1$$

= .271(250)(20) = **1355** *lbs*

$$P_2 = \frac{1}{2}k_a\gamma L_1^2$$

= .5(.271)(125)(20)² = **6775** *lbs*

$$P_3 = k_a(q + \gamma L_1)L_2$$

= .271(250 + 125(20))12 = **8943** lbs

$$P_4 = \frac{1}{2}k_a(\gamma_{SAT} - \gamma_W)L_2^2 + \frac{1}{2}\gamma_W L_2^2$$

= .5(.271)(145 - 62.4)(12)² + .5(62.4)(12)² = **6105** *lbs*

$$a_{3} = \frac{\sigma_{2}}{\gamma'(k_{p} - k_{a})}$$

$$= \frac{1763}{82.6(3.69 - .271)} = 6.24 ft$$

$$P_5 = \frac{1}{2}\sigma_2 L_3$$

= .5(1763)(6.24) = **5501** *lbs*

Kathryn Gonzales | Construction Management

Sum of Moments (without tieback)

$$\sum M_0 = P_1 \left(H + L_3 + L_2 + \frac{L_1}{2} \right) + P_2 \left(H + L_3 + L_2 + \frac{L_1}{3} \right) + P_3 \left(H + L_3 + \frac{L_2}{2} \right)$$

$$+ P_4 \left(H + L_3 + \frac{L_2}{3} \right) + P_5 \left(H + \frac{2L_3}{3} \right)$$

$$= 1355 \left(H + 6.24 + 12 + \frac{20}{2} \right) + 6775 \left(H + 6.24 + 12 + \frac{20}{3} \right) + 8943 \left(H + 6.24 + \frac{12}{2} \right)$$

$$+ 6105 \left(H + 6.24 + \frac{12}{3} \right) + 5501 \left(H + \frac{2(6.24)}{3} \right)$$

$$= 401869 + 28659H$$

$$\sum M_R = P_6 \frac{H}{3}$$
= $152H^2 \frac{H}{3} = 50.7H^3$

$$F.S. = 1.5 \quad - \longrightarrow \frac{M_O}{M_R} = 1.5 \quad - \longrightarrow M_O = 1.5 M_R$$

$$M_0 = 1.5M_R$$

 $401869 + 28659H = 1.5(50.7)H^3$
 $-76H^3 + 28659H + 401869 = 0$
 $H = 24.4 ft$

Total height = L1 + L2 + L3 + H=20+12+6.24+24.4=**62.64ft**

Sum of Moments (with tieback)

$$\sum F_X = P_1 + P_2 + P_3 + P_4 + P_5 - P_T - P_6$$

$$= 1355 + 6775 + 8943 + 6105 + 5501 - P_T - 152H^2$$

$$= 28659 - P_T - 152H^2$$

$$P_T = 28659 - 152H^2$$

$$M_T = P_T(H + L_3 + L_2 + L_1 - 10')$$

= $P_T(H + 6.24 + 12 + 20 - 10)$
= $P_T(H + 28.24)$

$$M_O = M_R - M_T$$

 $401869 + 28659H = 76H^3 - P_TH + P_T28.24$
 $401869 + 28659H = 76H^3 - (28659 - 152H^2)H + (28659 - 152H^2)28.24$
 $H = 5.5 ft$

Total height =
$$L1 + L2 + L3 + H$$

=20+12+6.24+5.5=43.74ft~44ft

$$P_T = 28659 - 152(5.5)^2 = 24061 \, lbs = 24k/ft$$

Appendix

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix


```
M_a = 145.6ft \cdot k

M_u = 1.64M_a

M_u = 1.64(145.6) = 239ft \cdot k
```

$$V_a = 14.2k$$

 $V_u = 1.64V_a$
 $V_u = 1.64(14.2) = 23.3k$

Kathryn Gonzales | Construction Management

Calculate Shear on Wall

$$\phi V_n = \phi 2 \sqrt{f'cbd}$$

 $\phi V_n = .9 * 2 \sqrt{5000} (12)(20)$
 $\phi V_n = 30.5k > 23.3k \text{ ok} \checkmark$

Calculate Moment on Wall

$$a = \frac{A_s * f_y}{.85f'c b}$$

$$a = \frac{A_s * 60}{.85(5)(12)} = 1.18A_s$$

$$\phi M_n = \phi A_s f_y (d - \frac{a}{2})$$

$$239 = .9(A_s)(60)(20 - \frac{1.18A_s}{2})$$

$$A_s = 2.90 \text{ in}^2$$

Use (2 layers) #8 @6" ->
$$A_s = 3.14 in^2$$

New
$$d = 24$$
"-3"-1"-.5"=19.5"

Check Shear and Moment

$$\phi V_n = 29.8k > 23.3k \quad ok \checkmark$$

$$\phi M_n = .9(3.14)(60)(19.5 - \frac{1.18 * (3.14)}{2})$$

$$\phi M_n = 2992 in \cdot k = 249ft \cdot k > 239ft \cdot k \quad ok \checkmark$$

Check Steel

$$\beta = .85 - .05(f'c - 4) = .85 - .05(5 - 4) = .80$$

$$c = \frac{a}{\beta} = \frac{3.71}{.8} = 4.63$$

$$\varepsilon = \frac{.003}{c}(d - c)$$

$$\varepsilon = \frac{.003}{4.63}(19.5 - 4.63) = .0096 > .005 \rightarrow \phi = 0.9$$

Horizontal Reinforcement

$$\rho = \frac{A_s}{bd}$$

$$A_s = \rho bd = .002(12)(12) = .288$$

$$A_s = (2 \text{ layers}) \# 4@12" = .40\text{in}^2$$

$$A_s = .40 > .288 \text{ ok} \checkmark$$

Vertical Reinforcement

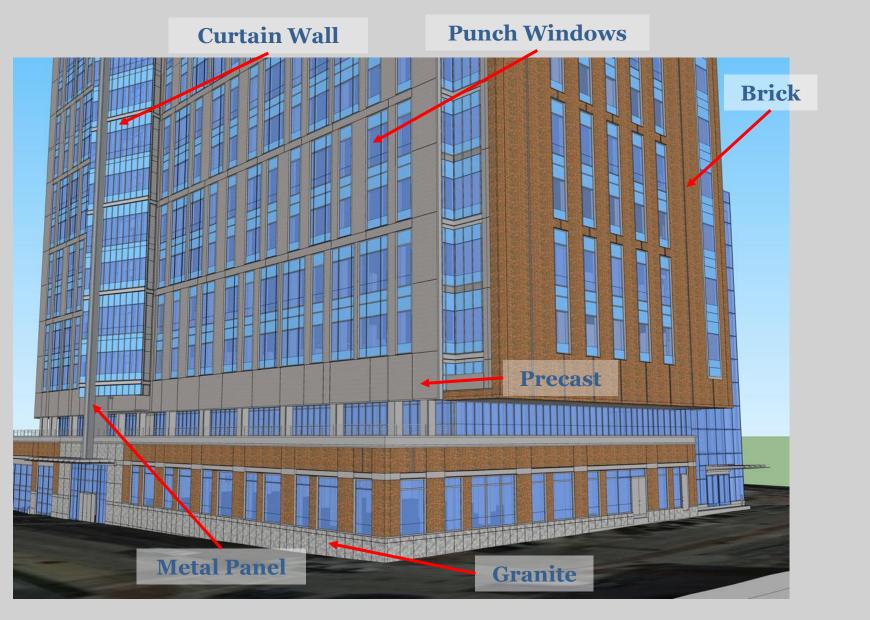
As seen above: $A_s = (2 \text{ layers}) \#8@6" = 3.14 \text{ in}^2$ $\rho = \frac{A_s}{bd}$ $\rho = \frac{3.14}{(12)(19.5)}$ $\rho = 0.013 > .0033 \text{ ok}$

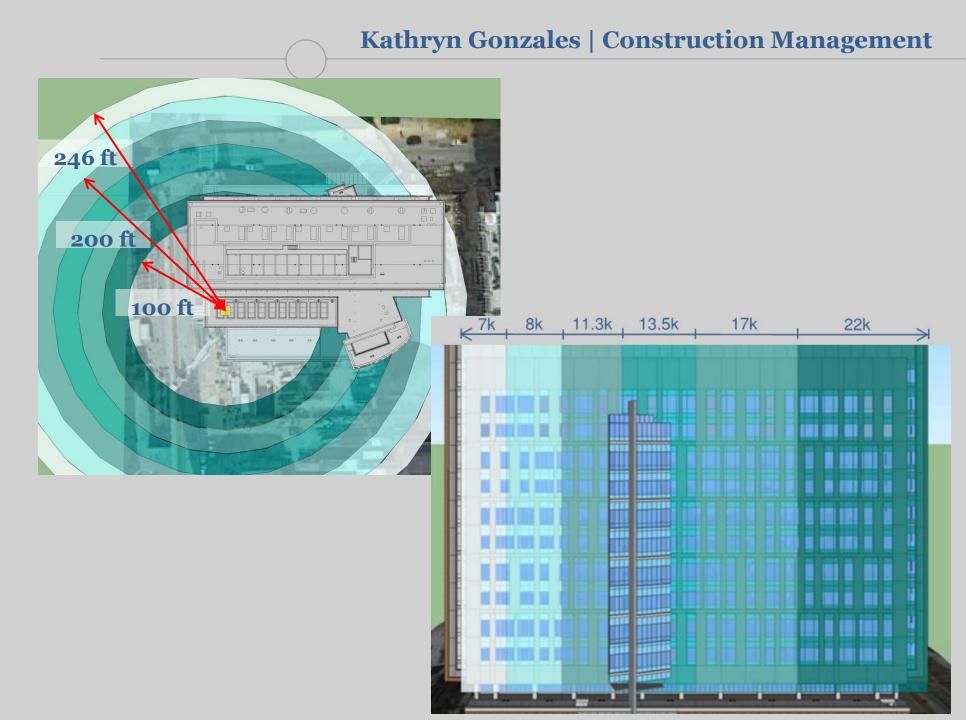
Project Information

Analysis 1 | Shoring System

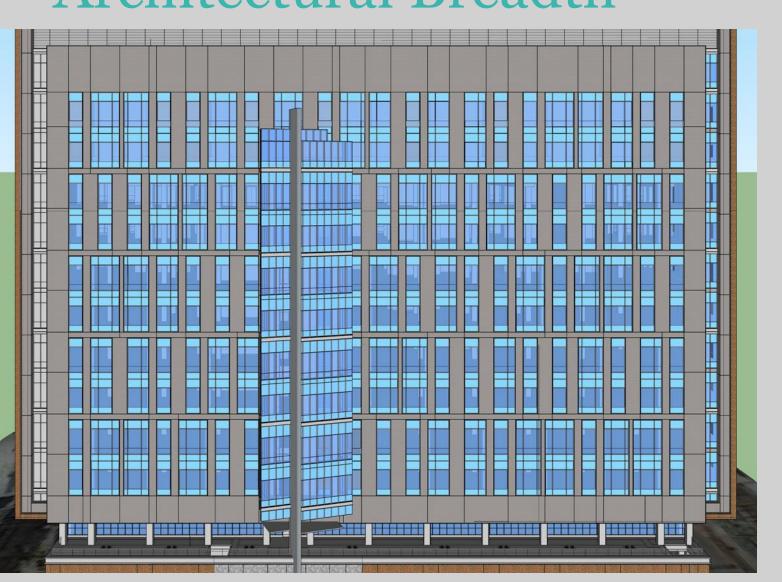
Structural Breadth

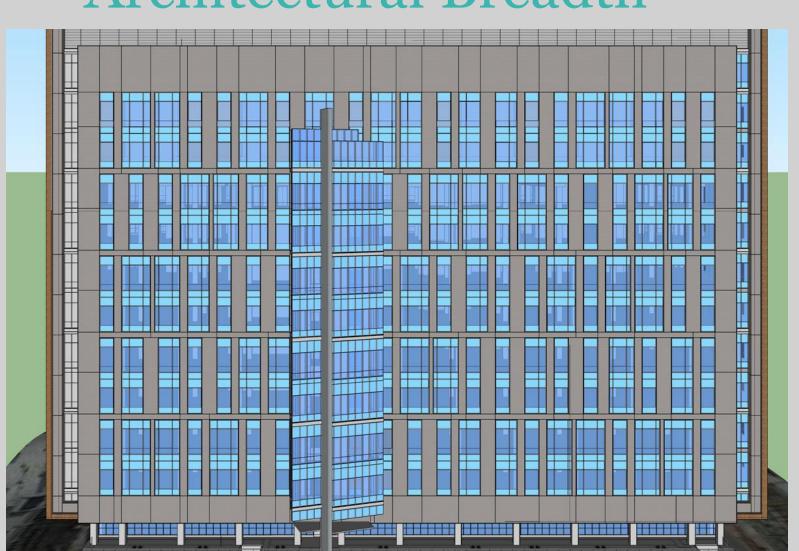
Analysis 2 | Motivation

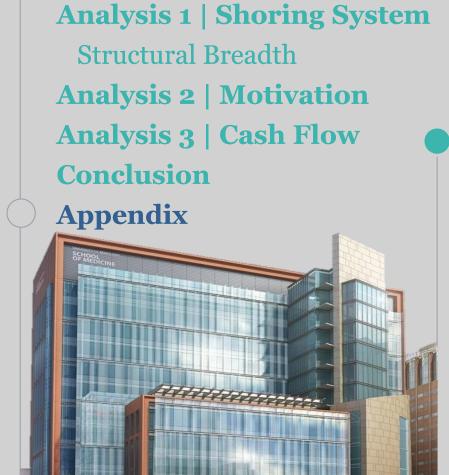

Analysis 3 | Cash Flow


Conclusion

Appendix


Architectural Breadth





Modified

Project Information

HEALTH SCIENCES FACILITY III

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Architectural Breadth

Selection

Omega-Lite®

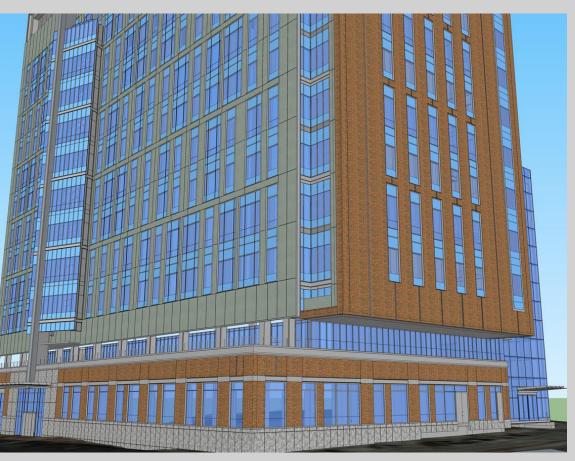
Material Restrictions

- 60" width
 - Limited to certain colors

R-Value

- Precast: 1.22
- Metal Panel: 2.63

Cost/SF


- \$103
- \$44

Better R-Value

Cheaper Cost/SF

Similar Panel Layout

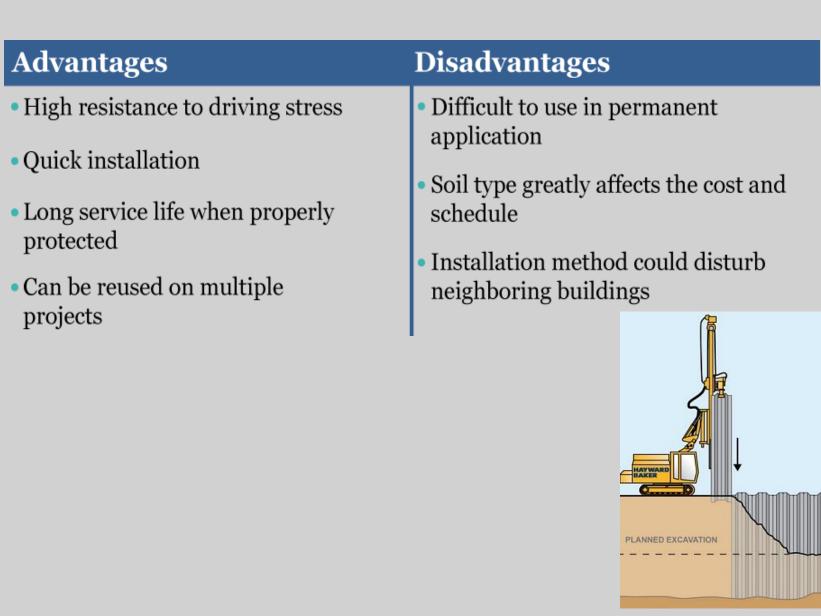
Metal Panel Recommended ✓

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

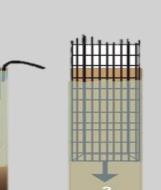

Analysis 3 | Cash Flow

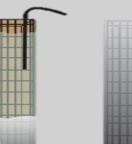
Conclusion

Appendix

Alternative Systems

Kathryn Gonzales | Construction Management


Advantages Disadvantages Good for applications with high water More expensive


- table
- Does not need backfill

High stiffness

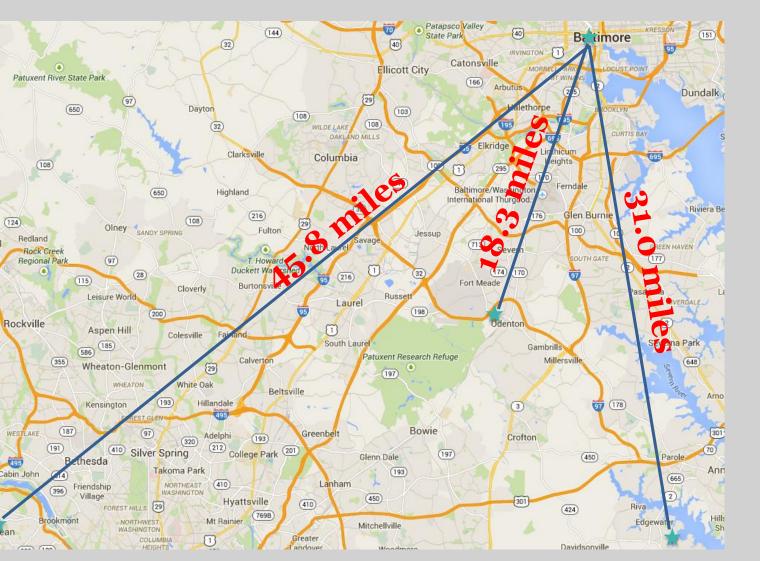
- Requires more working space than other systems
- Longer installation time

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation


Analysis 3 | Cash Flow

Conclusion

Appendix

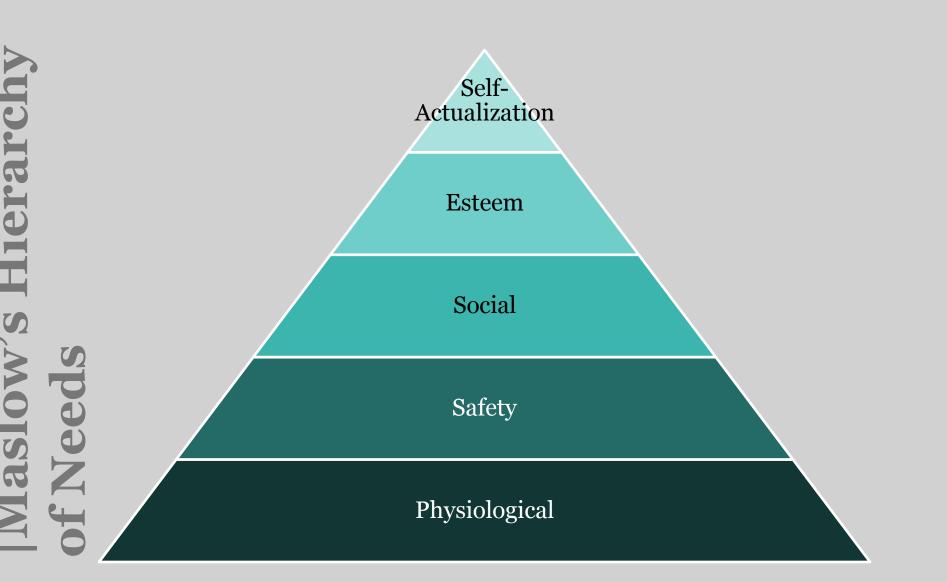
Comparison Matrix

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation


Analysis 3 | Cash Flow

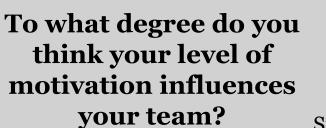
Conclusion

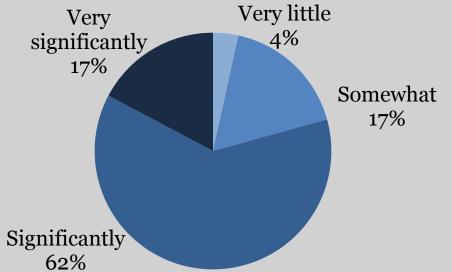
Appendix

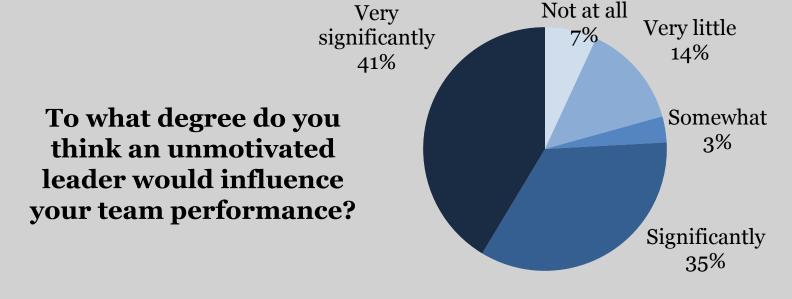
Literature Review

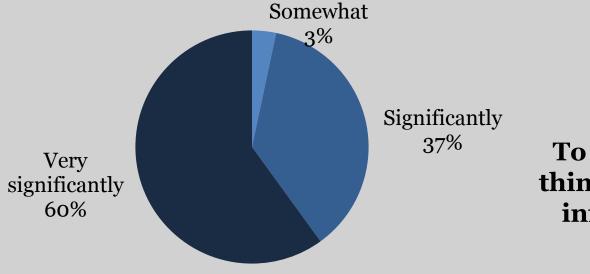
Project Information
Analysis 1 | Shoring System
Structural Breadth

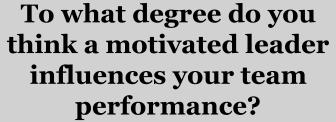
Analysis 2 | Motivation

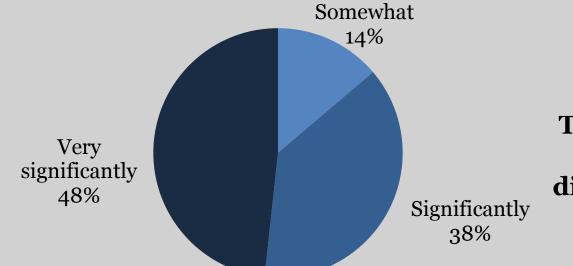

Analysis 3 | Cash Flow


Conclusion


Appendix


Survey Results





Kathryn Gonzales | Construction Management

To what degree do you think motivation is directly related to team performance?

Project Information

Analysis 1 | Shoring System

Structural Breadth

Analysis 2 | Motivation

Analysis 3 | Cash Flow

Conclusion

Appendix

Legend

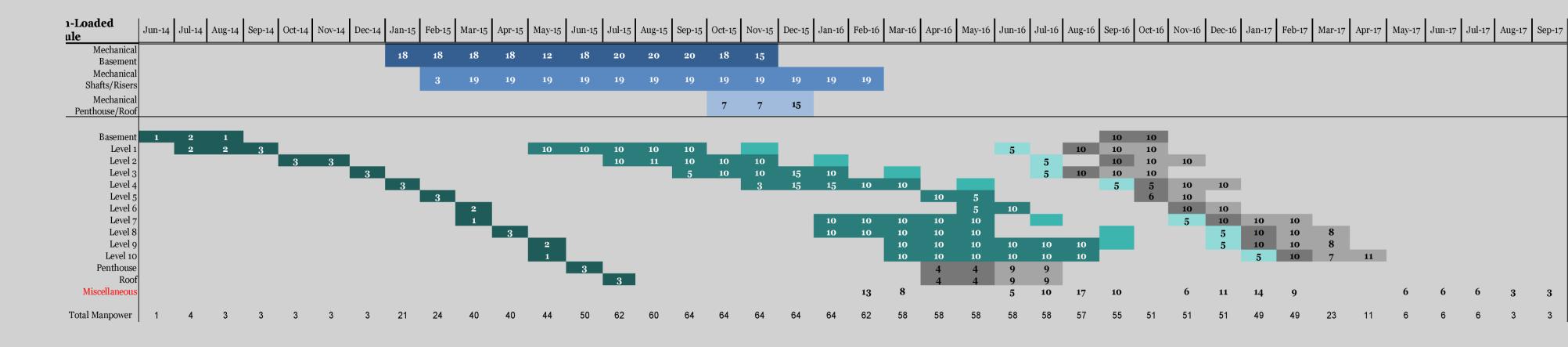
Mechanical Basement Mechanical Shaft/Risers

Mech LP/UP

Sleeves/ Inserts

Overhead/ In wall

Connect Service Panel


Connect Lab Equip

TAB

Commissioning

Kathryn Gonzales | Construction Management

Original Man-loaded Schedule

